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DIFFERENTIATION OF ENERGY FUNCTIONALS IN TWO-DIMENSIONAL

ELASTICITY THEORY FOR SOLIDS WITH CURVILINEAR CRACKS

UDC 539.375E. M. Rudoy

This paper considers the equations of two-dimensional elasticity theory in nonsmooth domains. The
domains contain curvilinear cracks of variable length. On the crack faces, conditions are specified
in the form of inequalities describing mutual nonpenetration of the crack faces. It is proved that the
solutions of equilibrium problems with a perturbed crack converge to the solution of the equilibrium
problem with an unperturbed crack in the corresponding space. The derivative of the energy functional
with respect to the length of a curvilinear crack is obtained.

Key words: elasticity, crack, Griffiths criterion, variational inequality, derivative of energy func-
tional, nonsmooth domain.

Introduction. In this paper, the equilibrium problem for an elastic body is studied within the framework of
two-dimensional elasticity theory. The body contains a curvilinear crack at whose faces nonpenetration conditions
are specified as a system of equalities and inequalities. The body is made of a homogeneous anisotropic material
which obeys Hooke’s law. It is assumed that homogeneous boundary conditions are satisfied on the external
boundary.

The mathematical issues of crack theory and, in particular fracture theory, which widely uses the Griffiths
energy criterion, are considered. According to this criterion, crack development (propagation) begins when the
derivative of the energy functional with respect to the crack length reaches the critical value of 2γ, which depends
on the physicomechanical properties of the material.

In the present study, a formula is obtained for the derivative of the energy functional with respect to the
parameter characterizing the length of a curvilinear crack at whose faces nonpenetration conditions are specified
as a system of equalities and inequalities. Strong convergence of the solution of the equilibrium problem in the
perturbed domain to the solution of the equilibrium problem in the unperturbed domain is established.

The dependence of the solutions of elliptic equations on the parameters for various perturbation domains
have been the subject of extensive research. The case of smooth domains is considered in [1]. Results concerning
differentiation of energy functionals for linear boundary-value problems in nonsmooth domains can be found in
[2, 3].

The derivative of energy functionals for nonlinear elliptic problems with conditions in the form of inequalities
on the boundary was first obtained in [4]. The method of obtaining derivatives described in [4] eliminates the need
for calculations of the boundary conditions for the substantial derivative of the solution, which, generally speaking,
is determined ambiguously. Similar derivatives for various problems of elasticity theory were obtained in [5–10] using
variational formulations [11]. The cracks were assumed to be rectilinear or additional conditions were imposed on
the perturbation such that the set of admissible displacements of points of the body for the unperturbed problem is
transformed in a one-to-one manner to the set of admissible displacements of points of the body for the perturbed
equilibrium problem.
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The obtained formulas were used to derive Cherepanov–Rice invariant integrals [4, 5, 10]. This integral
defines the rate of energy release for quasistatic crack growth and is used to describe crack extension in fracture
mechanics. A mathematical basis for the invariant integral for linear problems is given in [12].

In [10], an equilibrium problem is considered for a body consisting of two homogeneous anisotropic bodies
whose common boundary has a curvilinear crack with stress-free faces and a formula is obtained for the derivative
of the energy functional with respect to the parameter characterizing the change in the crack length. To find the
derivative of the energy functional, a coordinate transformation is used that maps the perturbed domain onto the
unperturbed domain in a one-to-one manner. Because natural boundary conditions in the form of equalities are
imposed on the boundary of the domain, it follows that with this coordinate transformation, the space of admis-
sible displacements with the perturbed domain is also mapped in a one-to-one manner to the space of admissible
displacements with the unperturbed domain, which is used in the derivation of the formula for the derivative. If
boundary conditions with unilateral constraints are specified on the boundary of the domain, such one-to-oneness
of the sets of admissible displacements is not obtained.

Formulation of the Problem. We consider a bounded domain Ω ⊂ R2 with a piecewise smooth bound-
ary Γ, Ω = Ω ∪ Γ. Let a curve Σ divides the domain Ω into two subdomains Ω1 and Ω2, i.e., Ω1 ∪ Ω2 = Ω,
Ω1 ∩ Ω2 = Σ. In this case, the boundaries of the domains Ω1 and Ω2 are also piecewise smooth. The curve Σ is
specified on the plane (x1, x2) by a function ψ ∈ H3(−l0, l1) so that Σ = {x2 = ψ(x1), −l0 < x1 < l1} and l0 > 0,
l1 > 0. A segment of the curve Σ specifies a crack Γl inside the domain Ω:

Γl = {x2 = ψ(x1), 0 < x1 < l}, 0 < l < l1.

Here l is a parameter that characterizes the length of the projection of Γl onto the x1 axis.
Let the vector ν = (ν1, ν2) = (−ψx1 , 1)/

√
1 + ψ2

x1
be a normal vector to the curve Σ. We assume that the

face Σ+ corresponds to the positive direction of the normal and Σ− corresponds to the negative direction.
The domain bounded by Γ, Γ

+

l , and Γ
−
l will be denoted by Ω0, i.e., Ω0 = Ω\Γl. The equilibrium problem is

considered in the domain Ω0 with a nonsmooth boundary Γ ∪ Γ+
l ∪ Γ−l .

We introduce the displacement vector W = (u1, u2). The body is assumed to be made of a homogeneous
elastic material which obeys Hooke’s law. The strain- and stress-tensor components are given by the formulas

εij(W ) =
1
2

( ∂ui

∂xj
+
∂uj

∂xi

)
, σij(W ) = cijklεkl(W ) (i, j = 1, 2)

with a symmetric and positive definite elasticity tensor {cijkl}, i.e., cijkl = cjikl = cklij , cijklξklξij > c0ξijξij , c0 > 0,
and ξij = ξji. For simplicity, we assume that cijkl are constants.

We assume that on the external boundary, the following boundary conditions are satisfied:

W = 0 on Γ. (1)

Conditions (1) correspond to the clamping condition on the external boundary.
Let Π(Ω0;W ) be the potential energy functional of the body:

Π(Ω0;W ) =
1
2

∫
Ω0

σij(W )εij(W)−
∫
Ω0

f ·W .

Here f = (f1, f2) is the specified vector of external forces; f ∈ [C1(Ω)]2.
Let us define the functional space in which the equilibrium problem will be studied. Let a subspace H1,0(Ω0)

of Sobolev’s space H1(Ω0) consist of functions which vanish on Γ. We denote the Cartesian product of two such
subspaces by H(Ω0): H(Ω0) = H1,0(Ω0) × H1,0(Ω0). Generally speaking, the functions from H(Ω0) can take
different values on the crack faces Γ+

l and Γ−l .
To prevent penetration of the crack faces into one another, we consider the following Singorini condition:

[W ] · ν > 0 on Γl. (2)

Here [W ] = W + −W− (W + and W− are the values of the function W at the positive and negative faces of the
cut Γl, respectively). It should be noted that condition (2) is invariant with respect to the choice of the direction of
the normal ν because with a change in the direction to −ν, the sign of the jump [ · ] at the crack faces also changes.
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We introduce the set of admissible displacements

K0(Ω0) = {W ∈ H(Ω0) | [W ] · ν > 0 almost everywhere on Γl},

which include conditions (1) on the external boundary Γ and the nonpenetration condition (2) for the crack faces.
The equilibrium problem for the body can be formulated as the problem of minimization of the energy func-
tional Π(Ω0;W ) on the set of admissible displacements K0(Ω0):

Π(Ω0;W0) = inf
W∈K0(Ω0)

Π(Ω0;W ). (3)

Because Π(Ω0;W ) is a coercive functional which is weakly semicontinuous from below, K0(Ω0) is a closed and
convex set, and H(Ω0) is Hilbert space, it follows that problem (3) has a unique solution W0 ∈ K0(Ω0). Since the
functional Π(Ω0;W ) is convex and differentiable, this solution satisfies the variational inequality∫

Ω0

σij(W0)εij(W −W0) >
∫
Ω0

f · (W −W0) ∀W ∈ K0(Ω0). (4)

The variational inequality (4) is equivalent to the minimization problem (3) [11].
We note that the solution of problem (3) in the domain Ω0 satisfies the equilibrium equations

−∂σij(W0)
∂xj

= fi (i = 1, 2) almost everywhere on Ω0, (5)

the boundary condition (1), the nonpenetration condition (2), and the boundary conditions on the crack Γl

[σν(W0)] = 0, σν(W0) 6 0, στ (W0) = 0, σν(W0)[W0] · ν = 0, (6)

which can given an exact meaning in the space (H1/2
00 (Γl))∗, where (H1/2

00 (Γl))∗ is a dual space of H1/2
00 (Γl) [11].

The operators σν(W ) and στ (W ) = (στ1(W ), στ2(W )) denote normal stresses and the tangential component of
the force vector on Γl, respectively, and are defined by the formulas

{σij(W )νj} = σν(W )ν + στ (W ).

Next, we consider a set of domains with cracks that depends on the small parameter δ. We define the set

Γl+δ = {x2 = ψ(x1), 0 < x1 < l + δ}, 0 < l + δ < l1,

which characterizes the perturbation of the crack Γl along the curve Σ. The domain with the crack Γl+δ is denoted
by Ωδ = Ω \ Γl+δ. The potential energy functional of the body occupying the perturbed domain Ωδ is defined by

Π(Ωδ;W ) =
1
2

∫
Ωδ

σij(W )εij(W )−
∫
Ωδ

f ·W .

The space H(Ωδ) is defined similarly to the space H(Ω0). The set of admissible displacements of points of the body
occupying the perturbed domain Ωδ is defined by the formula

Kδ(Ωδ) = {W ∈ H(Ωδ) | [W ] · ν > 0 on Γl+δ}.

In the domain Ωδ, we formulate an equilibrium problem as the problem of minimization of the energy
functional on the set of admissible displacements Kδ(Ωδ):

Π(Ωδ;W δ) = inf
W∈Kδ(Ωδ)

Π(Ωδ;W ), (7)

which, in turn, is equivalent to the variational inequality∫
Ωδ

σij(W δ)εij(W −W δ) >
∫
Ωδ

f · (W −W δ) ∀W ∈ Kδ(Ωδ)

and has a unique solution W δ ∈ Kδ(Ωδ) by virtue of the same reasons as for problem (3).
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The main goal of the present study is to find the derivative of the energy functional with respect to the
perturbation parameter of the domain Ω0 that characterizes the change in the crack length Γl, i.e., to calculate the
limit

G = lim
δ→0

Π(Ωδ;W δ)−Π(Ω0;W0)
δ

,

where W0 and W δ are the solutions of the equilibrium problem in the unperturbed and perturbed domains,
respectively. The quantity G characterizes the rate of energy release during quasistatic crack growth. According
to the Griffiths criterion [13, 14], the crack begins to propagate when G reaches a certain critical value of 2γ
characteristic of the material of which the body is made. The quantity γ defines the surface energy per unit free
surface of the body; in our case, per unit crack length.

Auxiliary Statements and Formulas. Following [4, 8], we introduce the mapping of the perturbed
domain Ωδ onto the initial domain Ω0. Let Bε ⊂ R2 be a sphere of radius ε > 0 with center at the crack tip [l, ψ(l)].
We assume that ε is sufficiently small so that Bε ⊂ Ω and the second tip of the crack (0, ψ(0)) is outside the closed
sphere Bε. We use a smooth cut-off function θ such that supp θ ⊂ Bε and θ ≡ 1 in Bε/2. For sufficiently small
δ < ε/2 such that (l + δ, ψ(l + δ)) ∈ Bε (this inclusion is possible because of the smoothness of the function ψ), we
consider the transformation of the independent variables

y1 = x1 − δθ(x1, x2), y2 = x2 + ψ(x1 − δθ(x1, x2))− ψ(x1) (8)

((y1, y2) ∈ Ω0, (x1, x2) ∈ Ωδ),

which maps the perturbed domain Ωδ onto the unperturbed domain Ω0 in a one-to-one manner. The functional
transformation matrix

A =
∂(y1, y2)
∂(x1, x2)

=

(
1− δθ,1(x) (1− δθ,1(x))ψ′(x1 − δθ(x))− ψ′(x1)

−δθ,2(x) 1− δθ,2(x)ψ′(x1 − δθ(x))

)
[ψ′(t) = dψ(t)/dt and x = (x1, x2)] has the Jacobian

Jδ = 1− δ
∂θ

∂τ
,

∂

∂τ
≡ ∂

∂x1
+ ψ′(x1)

∂

∂x2
,

which is strictly positive for small δ. The derivative ∂/∂τ denotes differentiation along the curve Σ, where τ

= (−ν2, ν1) is the tangent vector to Σ.
Since the space H3(−l0, l1) is embedded in C2[−l0 + δ1, l1 − δ1], where δ1 > 0 is a sufficiently small quan-

tity [15], the following Taylor formulas are valid in the neighborhood of Bε:

ψ′(x1 ± δθ(x)) = ψ′(x1)± δθ(x)ψ′′(x1) +R±(δ,x). (9)

Here R± = o(±δθ(x)) are additional terms in Peano form [16]. Because of the smoothness of θ and ψ, the following
convergences hold:

R±(δ,x)
δ

→ 0 strongly in L∞(Ω); (10)

in addition, R±(δ, · ) ∈ H1(Ω).
By virtue of (9), the functional matrix A admits the representation

A = I − δ

(
θ,1(x) θ(x)ψ′′(x1) + θ,1(x)ψ′(x1)

θ,2(x) θ,2(x)ψ′(x1)

)
+

(
0 R1(δ,x)

0 R2(δ,x)

)
, (11)

where

R1(δ,x) = R−(δ,x)− δ2θ(x)θ,1(x)ψ′′(x1) + δθ,1(x)R−(δ,x),

R2(δ,x) = δ2θ,2(x)ψ′′(x1)− δR−(δ,x).
(12)

From (10) and the presumed smoothnesses of the functions θ and ψ, it is obvious that the functions Ri (i = 1, 2)
are uniformly bounded in δ and x for small δ and Ri = o(δ).
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Since in the transformation of the independent variables (8), the domain Ωδ is mapped onto the domain Ω0 in
a one-to-one manner, an inverse transformation x = x(δ,y) exists that maps the domain Ω0 onto the domain Ωδ. We
denote the transformed function u(x), x ∈ Ωδ by ũ(y), y ∈ Ω0, i.e., ũ(y) = ũ(x1−δθ(x), x2+ψ(x1−δθ(x))−ψ(x1))
≡ u(x). Using (11), the transformation formulas for the derivatives can be written as

∂u

∂x1
=

∂ũ

∂y1
− δθ,1

∂ũ

∂y1
− δ(θϕ),1

∂ũ

∂y2
+R1

∂ũ

∂y2
,

∂u

∂x2
=

∂ũ

∂y2
− δθ,2

∂ũ

∂y1
− δ(θϕ),2

∂ũ

∂y2
+R2

∂ũ

∂y2
,

(13)

where ϕ(x1, x2) = ψ′(x1). Therefore, the components of the transformed strain and stress tensors become

εij(W ) = εij(W̃ )− δEδ
ij(θ; W̃ ) + o(δ)rij(W̃ ),

σij(W ) = cijkl(εkl(W̃ )− δEδ
kl(θ; W̃ ) + o(δ)rkl(W̃ )).

(14)

Here rij are certain continuous forms that can be written in accurate form by analogy with formulas (12), using (13).
In (14), we used the notation

Eδ
ij(θ;W ) =

1
2

(
θδ

,j

∂ui

∂y1
+ θδ

,i

∂uj

∂y1
+ (θϕ)δ

,j

∂ui

∂y2
+ (θϕ)δ

,i

∂uj

∂y2

)
,

where θδ
,i(y) = θ,i(x(δ,y)) and (θϕ)δ

,i(y) = (θϕ),i(x(δ,y)) (i = 1, 2). In this case, the following convergences for
δ → 0 are valid:

θδ
,i → θ,i strongly in L∞(Ω0),

(θϕ)δ
,i → (θϕ),i strongly in L∞(Ω0).

We apply the transformation of the independent variables (8) to the integrals in Π(Ωδ;W ) and use formu-
las (14). Then, we obtain the equality Π(Ωδ;W ) = Πδ(Ω0; W̃ ) with

Πδ(Ω0;W ) =
1
2

∫
Ω0

J−1
δ cijkl(εkl(W )− δEδ

kl(θ;W ) + o(δ)rkl(W ))

× (εij(W )− δEδ
ij(θ;W ) + o(δ)rij(W ))−

∫
Ω0

J−1
δ f δ ·W , (15)

where f δ(y) = f(x(δ,y)). The set of admissible displacements Kδ(Ωδ) is transformed to the set Kδ(Ω0) in a
one-to-one manner:

Kδ(Ω0) = {W ∈ H(Ω0) | [W ] · νδ > 0 on Γl}.

Here νδ is the transformed normal vector ν, i.e., νδ(y) = ν(x(δ,y)), where y ∈ Ω0 and x ∈ Ωδ. We note that the
vector νδ generally does not coincide with the normal vector ν to Γl. For rectilinear cracks, νδ = ν = const on Γl.

Thus, the following lemma is valid:
Lemma 1. For sufficiently small δ, the solution W δ of the perturbed problem (7) mapped onto the unper-

turbed domain Ω0 by means of transformation (8) is the unique solution Wδ ∈ Kδ(Ω0) of the problem of minimization
of the functional Πδ(Ω0;W ) on the set Kδ(Ω0). The minimization problem is equivalent to the variational inequality∫

Ω0

J−1
δ cijkl(εkl(Wδ)− δEδ

kl(θ;Wδ) + o(δ)rkl(Wδ))(εij(W −Wδ)

− δEδ
ij(θ;W −Wδ) + o(δ)rij(W −Wδ)) >

∫
Ω0

J−1
δ f δ · (W −Wδ), (16)

which is valid for all functions W from the set Kδ(Ω0).
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Substituting W = 0 and W = 2Wδ as test functions into (16), summing the resulting inequalities, and
using the Korn and Hölder inequalities, we have the uniform estimate

‖Wδ‖H(Ω0) 6 c (17)

for sufficiently small δ > 0.
Convergence of Solutions. Because of the smoothness of the functions ψ and f , the operators in problem

(16) can be expanded in a series in δ. Indeed, we have

J−1
δ = 1 + δ

∂θ

∂τ
+ o(δ) in Ω0; (18)

fδ
i = fi + δθ

∂fi

∂τ
+ o(δ) in Ω0 (i = 1, 2). (19)

Then, relations (18) and (19) imply

J−1
δ fδ

i = fi + δ
∂

∂τ
(θfi) + o(δ) in Ω0 (i = 1, 2). (20)

Therefore, by virtue of (20), the right side of (16) can be expanded in a series in δ:∫
Ω0

J−1
δ f δ(W −Wδ) =

∫
Ω0

((
fi + δ

∂

∂τ
(θfi)

)
(ui − uiδ) + o(δ)r2(W ,Wδ)

)
(21)

with a certain continuous form r2.
The left side of inequality (16) can be expanded in a series in δ with a continuous form r3:∫

Ω0

J−1
δ cijkl(εkl(Wδ)− δEδ

kl(θ;Wδ) + o(δ)rkl(Wδ))

× (εij(W −Wδ)− δEδ
ij(θ;W −Wδ) + o(δ)rij(W −Wδ))

=
∫
Ω0

(
σij(Wδ)εij(W −Wδ)− δ

(
σij(Wδ)Eδ

ij(θ;W −Wδ)

+ cijklE
δ
kl(θ;Wδ)εij(W −Wδ) +

∂θ

∂τ
σij(Wδ)εij(W −Wδ)

)
+ o(δ)r3(W ;Wδ)

)
. (22)

To prove the theorem on the convergence of the solutions of equilibrium problems defined in perturbed
domains, we need the following auxiliary lemma.

Lemma 2. Let W0 = (u10, u20) ∈ K0(Ω0) and Wδ = (u1δ, u2δ) ∈ Kδ(Ω0) be the solutions of problems (4)
and (16), respectively. Then, the following inclusions are valid:

W 1
δ = W0 + δQ1

δ ∈ Kδ(Ω0), W 2
δ = Wδ − δQ2

δ ∈ K0(Ω0).

Here

Q1
δ = (0, θδψ′′u10 + (Rδ

+/δ)u10), Q2
δ = (0, θδψ′′u1δ + (Rδ

+/δ)u1δ).

Proof. Because the functions ψ and θ are smooth, θ is compactly supported, and u10 belongs to the space
H1,0(Ω0), it follows that the functions W 1

δ and W 2
δ belong to the space H(Ω0). Let us show that the corresponding

conditions on the crack Γl are also satisfied.
We consider an arbitrary function W ∈ Kδ(Ω0) for which the following condition is satisfied:

[W ] · νδ > 0 on Γl. (23)

Since the coordinate transformation (8) maps the domain Ωδ onto the domain Ω0, we have x1 = y1 + δθδ(y), where

θδ(y) = θ(x(δ,y)) (y ∈ Ω0 and x ∈ Ωδ). By virtue of (9) and because ν = (−ψ,1(x1), 1)/
√

1 + ψ2
,1(x1), condition

(23) can be written in the following equivalent form:

−ψ′(y1)[u1] + [u2]− δθδψ′′(y1)[u1]−Rδ
+(δ,y)[u1] > 0 almost everywhere on Γl. (24)
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For the function W 1
δ from (24), we obtain

−ψ′[u10] + [u20] + δθδψ′′[u10] +Rδ
+[u10]− δθδψ′′[u10]−Rδ

+[u10] = −ψ′[u10] + [u20].

Since W0 ∈ K0(Ω0), we have

−ψ′[u10] + [u20] > 0 almost everywhere on Γl. (25)

Since Wδ ∈ Kδ(Ω0), for the function W 2
δ from (25) we obtain

ψ′[u1δ] + [u2δ]− δθδψ′′[u1δ]−Rδ
+[u1δ] > 0 almost everywhere on Γl.

Lemma 2 is proved.
Let us prove the theorem on the convergence of the solutions of equilibrium problems defined in perturbed

domains.
Theorem 1. Let W0 be a solution of the unperturbed problem (3), and let W δ be a solution of the perturbed

problem (7), Wδ(y) = W δ(x) (y ∈ Ω0 and x ∈ Ωδ). Then, the following convergence for δ → 0 is valid:

Wδ → W0 strongly in H(Ω0).

Proof. The functions W0 and Wδ satisfy the variational inequalities (4) and (16), respectively. By virtue
of Lemma 2, W = W 2

δ can be substituted as a test function into (4), and W = W 1
δ as a test function into (16).

Using formulas (21) and (22) and summing the resulting inequalities, we have the inequality∫
Ω0

σij(Wδ −W0)εij(Wδ −W0) 6 δ
(∫

Ω0

σij(Wδ)εij(Q1
δ)−

∫
Ω0

σij(W0)εij(Q2
δ)

+
∫
Ω0

σij(Wδ)Eδ
ij(θ;Wδ −W0 − δQ1

δ)−
∫
Ω0

cijklE
δ
kl(θ;Wδ)εij(Wδ −W0 − δQ1

δ)

+
∫
Ω0

∂θ

∂τ
σij(Wδ)εij(Wδ −W0 − δQ1

δ) +
∫
Ω0

f · (Wδ −W0) +
∫
Ω0

f ·Q2
δ −

∫
Ω0

f ·Q1
δ

−
∫
Ω0

( ∂

∂τ
(θfi)(uiδ − ui0 − δQ1

δi)
)

+ o(δ)r4(W0 − δQ1
δ ,Wδ)

)
(26)

with a certain bounded form r4.
By virtue of the first Korn’s inequality, the left side of inequality (26) is equivalent to the norm of the element

Wδ −W0 in the space H(Ω0). On the right side of inequality (26), the integrals at δ are bounded by virtue of (17).
Thus, the following estimate uniform with respect to δ is valid:

‖Wδ −W0‖H(Ω0) 6 cδ.

Theorem 1 is proved.
Theorem 1 implies the obvious corollary.
Corollary 1. The following convergences are valid:

Q1
δ → Q0 strongly in H(Ω0),

Q2
δ → Q0 strongly in H(Ω0),

Eδ
ij(θ;W0) → Eij(θ;W0) strongly in L2(Ω0),

Eδ
ij(θ;Wδ) → Eij(θ;W0) strongly in L2(Ω0).

Here

Q0 = (0, θψ′′u10), Eij(θ;W ) =
1
2

(
θ,j

∂ui

∂x1
+ θ,i

∂uj

∂x1
+ (θϕ),j

∂ui

∂x2
+ (θϕ),i

∂uj

∂x2

)
. (27)
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Formula for the Derivative of the Energy Functional with Respect to the Crack Length. In
seeking the formula of the energy functional derivative with respect to the crack length, we use the variational
properties of the solutions of equilibrium problems in the perturbed and unperturbed domains. The functional
Πδ(Ω0;W ) is expanded in a series in δ. Using formulas (15) and (18), we obtain

Πδ(Ω0;W ) =
1
2

∫
Ω0

σij(W )εij(W )−
∫
Ω0

f ·W

− δ

∫
Ω0

σij(W )Eδ
ij(θ;W ) +

1
2
δ

∫
Ω0

θδ
τσij(W )εij(W )− δ

∫
Ω0

( ∂

∂τ
(θfi)ui + o(δ)r5(W )

)
, (28)

where r5 is a certain continuous form.
We use the method proposed in [4]. By virtue of Lemma 1, the equality

Π(Ωδ;W δ) = Πδ(Ω0;Wδ) (29)

is valid for all sufficiently small δ > 0. To calculate the derivative of the energy functional with respect to the crack
length, it is necessary to find the limit

lim
δ→0

Π(Ωδ;W δ)−Π(Ω0;W0)
δ

. (30)

Thus, by virtue of (29) and Lemma 2, we have

Π(Ωδ;W δ)−Π(Ω0;W0)
δ

=
Πδ(Ω0;Wδ)−Π(Ω0;W0)

δ
6

Πδ(Ω0;W0 + δQ1
δ)−Π(Ω0;W0)
δ

.

From this it follows that the following inequality is satisfied:

lim sup
δ→0

Π(Ωδ;W δ)−Π(Ω0;W0)
δ

6 lim sup
δ→0

Πδ(Ω0;W0 + δQ1
δ)−Π(Ω0;W0)
δ

.

By virtue of the corollary of Theorem 1 and the boundedness of the form r5, from formula (28) we obtain

lim sup
δ→0

Πδ(Ω0;W0 + δQ1
δ)−Π(Ω0;W0)
δ

= lim
δ→0

Πδ(Ω0;W0 + δQ1
δ)−Π(Ω0;W0)
δ

=
1
2

∫
Ω0

∂θ

∂τ
σij(W0)εij(W0)−

∫
Ω0

σij(W0)Eij(θ;W0)−
∫
Ω0

∂

∂τ
(θfi)ui0 +

∫
Ω0

σij(W0)εij(Q0)−
∫
Ω0

f ·Q0.

At the same time, the relation

Πδ(Ω0;Wδ)−Π(Ω0;W0)
δ

>
Πδ(Ω0;Wδ)−Π(Ω0;Wδ − δQ2

δ)
δ

is valid, and, hence, the following inequality is satisfied:

lim inf
δ→0

Π(Ωδ;W δ)−Π(Ω0;W0)
δ

> lim inf
δ→0

Πδ(Ω0;Wδ)−Π(Ω0;Wδ − δQ2
δ)

δ
.

Taking into account Theorem 1, Corollary 1, and the boundedness of the form r5 from (28), we have

lim inf
δ→0

Πδ(Ω0;Wδ)−Π(Ω0;Wδ − δQ2
δ)

δ
= lim

δ→0

Πδ(Ω0;Wδ)−Π(Ω0;Wδ − δQ2
δ)

δ

=
1
2

∫
Ω0

∂θ

∂τ
σij(W0)εij(W0)−

∫
Ω0

σij(W0)Eij(θ;W0)−
∫
Ω0

∂

∂τ
(θfi)ui0 +

∫
Ω0

σij(W0)εij(Q0)−
∫
Ω0

f ·Q0.

We find that the lower limit of the sequence {1/δ(Π(Ωδ;W δ)−Π(Ω0;W0))} is valuated from below by same constant
as the upper limit of this sequence from above. Consequently, the limit (30) exists and is equal to this constant.

Thus, the following theorem is proved.
Theorem 2. The derivative of the energy functional Π(Ωδ;W δ) with respect to the length of the projection

of the crack Γl onto the x1 axis exists and is defined by the formula
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Π′(l) =
dΠ(Ωδ;W δ)

dδ

∣∣∣
δ=0

=
1
2

∫
Ω0

∂θ

∂τ
σij (W0)εij(W0)−

∫
Ω0

σij(W0)Eij(θ;W0)

−
∫
Ω0

∂

∂τ
(θfi)ui0 +

∫
Ω0

σij(W0)εij(Q0)−
∫
Ω0

f ·Q0, (31)

where Q0 and Eij(θ;W0) are defined by formulas (27).
Remark 1. Since Π(Ωδ;W δ) and Π(Ω0;W0) do not depend on the cut-off function θ, the derivative

dΠ(Ωδ;W δ)/dδ
∣∣∣
δ=0

also does not depend on θ, in spite of the fact that θ appears in formula (31). This implies

that for two different functions θ1 and θ2, the values of the integrals in (31) coincide.
Remark 2. Since formula (31) defines the derivative of the energy functional with respect to the length of

the projection of the crack Γl onto the x1 axis, the derivative of the energy functional with respect to the length of

the curvilinear crack Π′(s) = Π′(l)((ψ′(l))2 + 1)−1/2, where s =

l∫
0

√
(ψ′(t))2 + 1 is the length of the crack Γl.

Analysis of the Formula. As noted above, a formula for the derivative of the energy functional for the
equilibrium problem for a body with a curvilinear crack located on the boundary of two bodies was obtained in [10].
Assuming that the elastic properties of these bodies are identical, we obtain the formulation of the problem studied
in the present paper with the difference that the object of study in [10] was a crack with faces free of stresses. In
this case, formula (31) differs from the corresponding formula in [10] by the last two terms, namely:

∆(W0) =
∫
Ω0

σij(W0)εij(Q0)−
∫
Ω0

f ·Q0.

We assume that the external load f is chosen in such a manner that on the crack Γl there is no contact, i.e.,
the crack faces are free of stresses. We show that in this case, ∆(W0) = 0.

As is known, the following statement (generalized Green formula [11]) is valid.
Statement 1. If U ∈ H(Ω0) and σij,j(U) ∈ L2(Ω0), then functionals exist that are defined on Γl:

σν(U), στi(U) ∈ (H1/2
00 )∗ (i = 1, 2);

for any function V = (v1, v2) ∈ [H1(Ω0)]2 the following formula is valid:∫
Ω0

σij(U)εij(V ) = −
∫
Ω0

σij,j(U)vi + 〈σν(U), vν〉Γl
+ 〈στi(U), vτi〉Γl

. (32)

Here vν and vτi are the traces of the function V on the crack Γl along the normal ν and the tangent τ , respectively.
The brackets 〈 · , · 〉Γl

denote the duality between the spaces H1/2
00 (Γl) and (H1/2

00 (Γl))∗.
Since f ∈ [C1(Ω)]2 ⊂ [L2(Ω0)]2, by virtue of (5), we conclude that σij,j(W0) ∈ L2(Ω0), i = 1, 2. Therefore,

we use formula (32) with V = Q0 ∈ H(Ω0). As a result, we obtain

∆(W0) = −
∫
Ω0

θψ′′u01(σ2j,j + f2) + 〈σν(W0), [Q0ν ]〉Γl
+ 〈στi(W0), [Q0τi]〉Γl

.

Since the crack faces do not contact, we have [W0] · ν > 0 on Γl, and, hence, by virtue of (6), we have
σν(W0) = 0. (33)

Taking into account the equilibrium equations (5), the boundary conditions on the crack (6), and equality (33), we
find that ∆(W0) = 0.

In conclusion, we make a few remarks. First, if the crack Γl is rectilinear, i.e., ψ′′ = 0, formula (31) coincides
with the results obtained earlier for rectilinear cracks with the nonpenetration condition for the faces [4–6].

Second, the results of the study remain valid for the case of a curvilinear crack which is a cut along a simple
piecewise smooth broken curve without points of self-intersection that can be continued until intersection with the
boundary of the domain Ω at a nonzero angle. In the neighborhood of the crack tip x1 = l, where its perturbation
occurs, the shape of the crack is defined by the equation x2 = ψ(x1) (x1 ∈ [l − δ0, l + δ0] and δ0 > 0), and the
perturbation parameter δ ∈ [0, δ0). Since the behavior of the energy functional is studied for δ → 0, the parameter δ0
can be very small.

This work was supported by the Russian Foundation for Basic Research (Grant No. 03-01-00124).
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